# PROJECT ONE: MILESTONE 4 – COVER PAGE

Team Number:

Tues-36

### Please list full names and MacID's of all *present* Team Members

| Full Name:           | MacID:  |
|----------------------|---------|
| Rahul Mahesh         | maheshr |
| Luigi Quattrociocchi | quattrl |
| Tuong Minh Doan      | doant6  |
|                      |         |

# MILESTONE 4 (STAGE 1) – FINALIZED DESIGN: ESTIMATE THICKNESS REQUIREMENT

Document the results of your materials selection and ranking on the following page.

→ Each team member is required to complete this on the *INDIVIDUAL* worksheet document, and then copy-and-paste to this document

We are asking that you submit your work on both worksheets. It does seem redundant, but there are valid reasons for this:

- Each team member needs to submit their estimation of deflection with the **Milestone Four Individual Worksheets** document so that it can be *graded*
- Compiling your individual work into the **Milestone Four Team Worksheets** document allows you to readily access your team member's work
  - This will be especially helpful when completing *Stage 2* of the milestone

### Tues-36

#### *Copy-and-paste from the INDIVIDUAL worksheet*

| Full Name:      | MacID: |
|-----------------|--------|
| Tuong Minh Doan | doant6 |

#### 1. The title of the scenario

| A Pioneer in Clean Energy |                           |
|---------------------------|---------------------------|
|                           | A Pioneer in Clean Energy |

#### 2. Chosen Material

|          | Material Name | Young's Modulus (GPa) | Yield Strength (MPa) |
|----------|---------------|-----------------------|----------------------|
| Chosen   | Steel         | 210                   | 295                  |
| Material |               |                       |                      |

| Assigned thickness, <i>t</i> from Table 1 (mm) | 15-mm    |
|------------------------------------------------|----------|
| Estimated deflection $\delta$ (mm)             | 14.01 mm |
|                                                |          |

t= 15mm  $I = \frac{\pi}{4} \left[ (a^{5}b - (a - l)^{3}(b - l) \right]$  $I = \frac{\pi}{4} \left[ (0.189m^{2}(0.375m) - (0.189m^{2}0.015m)^{3}(0.375m - 0.015m) \right]$ I = 4.9894115 × 10 - 4  $S = \frac{pbh''}{4ET} = \frac{3000 P_n (0.375m)(8.5m)''}{4(1.1 \times 10^{-1})(453 H | 5 \times 10^{-4})} = 0.0 H m$ 

## Tues-36

#### Copy-and-paste from the INDIVIDUAL worksheet

| Full Name:   | MacID:  |
|--------------|---------|
| Rahul Mahesh | maheshr |

#### 1. The title of the scenario

| A pioneer in Clean energ | / |  |  |
|--------------------------|---|--|--|
|                          |   |  |  |

#### 2. Chosen Material

|                    | Material Name | Young's Modulus (GPa) | Yield Strength (MPa) |
|--------------------|---------------|-----------------------|----------------------|
| Chosen<br>Material | Steel         | 210                   | 295                  |

| Assigned thickness, <i>t</i> from Table 1 (mm) | 30-mm |
|------------------------------------------------|-------|
| Estimated deflection $\delta$ (mm)             | 7.8   |

$$I = \frac{\pi}{4} \left[ \left( 0.184 \right)^{3} \left( 0.375 \right) - \left( 0.189 - 0.03 \right)^{3} \left( 0.375 - 0.03 \right) \right]$$

$$I = \frac{\pi}{4} \left( 0.001144 \right)$$

$$I = 0.003543$$

$$\frac{4}{4}$$

$$T = 0.00089$$

$$S = \frac{3000 \times 0.375 \times (8.5)^{4}}{4 \times 2.1 \times 10^{4} \times 0.00089}$$

$$S = \frac{5872570.31}{74660000}$$

$$S = 0.0078 \text{ m}$$

$$S = 7.8 \text{ mm}$$

Tues-36

#### Copy-and-paste from the INDIVIDUAL worksheet

| Full Name:           | MacID:  |
|----------------------|---------|
| Luigi Quattrociocchi | quattrl |

#### 1. The title of the scenario

| A nionaar in alaan anaray |  |
|---------------------------|--|
| A pioneer in clean energy |  |
| 05                        |  |

#### 2. Chosen Material

|                    | Material Name | Young's Modulus (GPa) | Yield Strength (MPa) |
|--------------------|---------------|-----------------------|----------------------|
| Chosen<br>Material | Steel         | 210                   | 295                  |

| Assigned thickness, <i>t</i> from Table 1 (mm)                          | 50-mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Estimated deflection $\delta$ (mm)                                      | 5.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $6 = \frac{PbL^{4}}{4EI} \qquad I = \frac{\pi}{4} \left[ a^{3} \right]$ | $b = (a - t)^3 (b - t)^3 P = 0.063 MPa = 3006 Pa$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\delta = (3666 P_{a})(0.159m)(5.5m) (4(2.1x10"P_{a})) IR$              | $\frac{)^{4}}{[=5.37 \text{ mm}]} = \frac{2166}{1} \frac{60}{2} \frac{10}{2} \frac{10}{2}$ |
| 1et t = 56 mm, I = 0.05 m                                               | $P = 7.8 \times 10^3 \text{ Mg/m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                         | $(a_{1}n - 0.05m)^{3} (0.378m 0.05m) = 0.375m$<br>L = 8.5m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Tues-36

#### Copy-and-paste from the INDIVIDUAL worksheet

| Full Name: | MacID:  |
|------------|---------|
| Michael    | Shadoff |

#### 1. The title of the scenario

| A nionaar in alaan anaray |  |  |
|---------------------------|--|--|
| A pioneer in clean energy |  |  |
|                           |  |  |

#### 2. Chosen Material

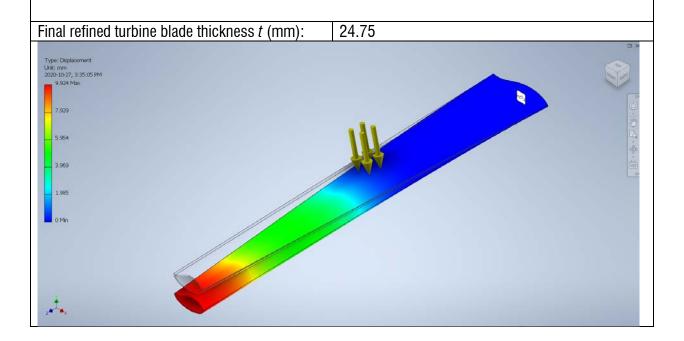
|                    | Material Name | Young's Modulus (GPa) | Yield Strength (MPa) |
|--------------------|---------------|-----------------------|----------------------|
| Chosen<br>Material | Steel         | 210                   | 295                  |

| Assigned thickn | ess, <i>t</i> from Table 1 (mm)         | 150-mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Estimated defle | ction δ (mm)                            | 3.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2               |                                         | a= R189m += 9.15m<br>6=0.375m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | $\delta = \frac{\rho  6L^{4}}{4  E  1}$ | $I = \frac{\pi}{4} \left( 0.189 \right)^{3} \left( 0.375 \right) - \left( 0.189 - 0.15 \right)^{3} \left( 0.375 - 0.15 \right)^{3} \right)^{3} \left( 0.375 - 0.15 \right$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 | 0.003mP4 (0.3/5<br>- 4 (210000mpg)0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| e               | 5.872570                                | $\frac{\pi}{4} \left( \left( 0.00675 \right) \left( 0.375 \right) - \left( 0.039 \right)^3 \left( 0.225 \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.000059 \right) \left( 0.225 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.000059 \right) \left( 0.225 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.000059 \right) \left( 0.225 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.000059 \right) \left( 0.225 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.000059 \right) \left( 0.225 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.000059 \right) \left( 0.225 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.000059 \right) \left( 0.225 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.000059 \right) \left( 0.225 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.000059 \right) \left( 0.225 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.000059 \right) \left( 0.225 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.000059 \right) \left( 0.225 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.000059 \right) \left( 0.225 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.000059 \right) \left( 0.225 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.000059 \right) \left( 0.225 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.000059 \right) \left( 0.225 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.000059 \right) \left( 0.225 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.000059 \right) \left( 0.225 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.000059 \right) \left( 0.225 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.000059 \right) \left( 0.225 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.000059 \right) \left( 0.225 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.000059 \right) \left( 0.000059 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.000059 \right) \left( 0.000059 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.000059 \right) \left( 0.00059 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.00059 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.00059 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00253 \right) - \left( 0.00059 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00259 \right) - \left( 0.00059 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00259 \right) - \left( 0.00059 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00259 \right) - \left( 0.00059 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00259 \right) - \left( 0.00059 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00259 \right) - \left( 0.00059 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00259 \right) - \left( 0.00059 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00259 \right) - \left( 0.00059 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00259 \right) - \left( 0.00059 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00259 \right) - \left( 0.00059 \right) \right) \\ \frac{\pi}{4} \left( \left( 0.00259 \right) - \left( 0.00059 \right) \right) \\ \frac{\pi}{4} \left( \left( $ |
|                 | = 1660.68                               | $= \frac{\pi}{4} ((0.00253 - (0.0000133))$ $= \frac{\pi}{4} (0.002517)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                 | = 0.003536                              | = 0.001477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                 | = 3.54 mm                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 | 4                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

\*If you are in a team of 5, please copy and paste the above on a new page

# MILESTONE 4 (STAGE 2) – FINALIZED DESIGN: REFINE THICKNESS REQUIREMENT

Team Number:


Tues-36

### 1. Calculate Thickness Requirement Based on Deflection Simulation

| Initial Thickness range, obtained from stage 1                                                       | 15mm < t < 30mm |
|------------------------------------------------------------------------------------------------------|-----------------|
| (e.g. 30mm < t < 50 mm):                                                                             |                 |
| For every iteration, include your thickness and observed deflection in the table below. Only include |                 |

as many rows as needed until you get a deflection of 10 mm (Do not over-design the turbine blade. i.e., if your deflection is less than 8.5 mm, it is over-designed). Add more rows, if needed:

| Thickness (mm) | Observed deflection (mm) |
|----------------|--------------------------|
| 21             | 10.91                    |
| 22             | 10.46                    |
| 23             | 8.61                     |
| 24             | 10.56                    |
| 25             | 9.43                     |
| 24.5           | 9.75                     |
| 24.75          | 9.92                     |



# MILESTONE 4 (STAGE 3) – PEER INTERVIEW

Team Number:

Tues-36

#### 1. Peer Interview Notes

Peer Scenario: Renewable Energy for a Large Population Objectives: Primary - MPI for Mass, Secondary - MPI for Volume Density was weighted the highest, followed by young's modulus, resistance to weather, ... cost. CFRP was the selected material over steel and titanium. The chosen thickness value for the blade was approximately 60 mm.

What was learned from other group:

- CFRP was the optimal material in terms of mass and volume
- The differing objectives resulted in vastly different material selection results between the two groups.

*Note*: Please be mindful that you are expected to write a short reflection on what you have learned from the other team in your final deliverable