PROJECT ONE: MILESTONE 3A – COVER PAGE

Team Number:

Tues-36

Please list full names and MacID's of all *present* Team Members

Full Name:	MacID:
Brian Tang	tangb17
Luigi Quattrociocchi	quattrl
Tuong Minh Doan	doant6
Rahul Mahesh	maheshr
Michael Shadoff	Shadoffm

MILESTONE 3A (STAGE 1) – MATERIAL SELECTION: PROBLEM DEFINITION

Team Number:

Tues-36

1. Copy-and-paste the title of your assigned scenario in the space below.

A Pioneer in Clean Energy

2. MPI selection

- List one primary objective and one secondary objective in the table below
- For each objective, list the MPI
- Write a short justification for your selected objectives

	Objective	MPI-	MPI-	Justification for this objective
		stiffness	strength	
Primary	Minimize CO ₂	$E/\rho CO_2$	$\sigma_y/\rho CO_2$	The primary goal in choosing a material should
	footprint from			minimize damage to the environment while also,
	production			maximizing the strength and stiffens of the material.
				The best way to do this is to take in to account the
				CO2 emissions caused by the turbines production.
				This is especially true considering that Sweden's
				main objective with this endeavor is to eliminate
				CO2 emissions by 2045
Secondary	Minimize Mass	E/ρ	σ_y/ ho	Minimizing the mass of each individual turbine
				allows for longer blades which in turn increases
				efficiency. The windmills would also be more
				stable and less likely to break when experiencing
				high wind pressure. Finally, maximizing efficiency
				is of greater importance than maximizing quantity
				of wind turbines produced, as Sweden has limited
				coastal areas that allow turbines to that should be
				utilized to their fullest potential, because of their
				higher windspeed.

MILESTONE 3A (STAGE 2) – MATERIAL SELECTION: MPI AND MATERIAL RANKING

Document the results of your materials selection and ranking on the following page.

→ Each team member is required to complete this on the *INDIVIDUAL* worksheet document, and then copy-and-paste to this document

We are asking that you submit your work on both worksheets. It does seem redundant, but there are valid reasons for this:

- Each team member needs to submit their summary of material property charts with the **Milestone Three-A Individual Worksheets** document so that it can be *graded*
- Compiling your individual work into this **Milestone Three-A Team Worksheets** document allows you to readily access your team member's work
 - This will be especially helpful when completing *Stage 3* of the milestone

Tues-36

Copy-and-paste from the INDIVIDUAL worksheet

Full Name:	MacID:
Brian Tang	tangb17
Rahul Mahesh	maheshr

Tues-36

Copy-and-paste from the INDIVIDUAL worksheet

Full Name:	MacID:
Michael Shadoff	Shadoffm

Tues-36

Copy-and-paste from the INDIVIDUAL worksheet

Full Name:	MacID:
Luigi Quattrociocchi	quattrl

Tues-36

Copy-and-paste from the INDIVIDUAL worksheet

Full Name:	MacID:
Tuong Minh Doan	Doant6

*If you are in a team of 5, please copy and paste the above on a new page

MILESTONE 3A (STAGE 3) – MATERIAL SELECTION: MATERIAL ALTERNATIVES AND FINAL SELECTION

Team Number:

Tues-36

Consolidation of Individual Material Rankings					
	Rank 1	Rank 2	Rank 3	Rank 4	Rank 5
	Material Name	Material Name	Material Name	Material Name	Material Name
MPI 1	Wood,	Bamboo	Steel	Wood,	Copper
$E/\rho CO_2$	typical along			typical	Alloys
-	grain			across grain	
MPI 2	Wood,	Bamboo	Steel	Cork	GFRP,
σy/ρCO2	typical along				ероху
	grain				matrix
					(isotropic)
MPI 3	CFRP,	Steels	Aluminum	Bamboo	Magnesium
E/ρ	ероху		allovs		alloys
	matrix		, , , , , , , , , , , , , , , , , , ,		_
	(isotropic)				
MPI 4	CFRP,	Titanium	GFRP,	Steel	Wood,
σ_y/ρ	ероху	alloys	ероху		typical along
	matrix		matrix		grain
	(isotropic)		(isotropic)		

Narrowing Material Candidate List to 3 Finalists			
Material Finalist 1:	Steel		
Material Finalist 2:	CFRP, epoxy matrix (isotropic)		
Material Finalist 3:	Wood, typical along grain		

Tues-36

Compare Material Alternatives and Make a Final Selection using a Decision Matrix

- \rightarrow As a team, establish a weighting factor for each criterion:
 - Move row-by-row
 - If Criteria 1 is preferred over Criteria 2, assign a 1. Otherwise, assign 0
 - If *Criteria 1* is preferred over *Criteria 3*, assign a 1. Otherwise, assign 0
 - Add additional rows/columns as needed

Criteria R	lanking					
	Cost	Young's modulus	CO2 emissions	density	Fatigue Strength	Weight factor
Cost	1	0	0	0	0	1
Young's Modulus	1	1	0	0	1	3
CO2 emissions	1	1	1	1	1	5
Density	1	1	0	1	1	4
Fatigue Strength	1	0	0	0	1	2

ightarrow As a team, evaluate your materials against each criterion using your weighting

• Add additional rows as needed

Decision Matrix							
	M/alabt	Steel		CFRP, epoxy matrix		Wood, typical along grain	
	weight			(/:	(ISOTROPIC)		
	factor	Rating	Weighted	Rating	Weighted	Rating	Weighted
			Rating		Rating		Rating
CO2	5	7	35	2	10	10	50
Emissions							
Density	4	3	12	7	28	9	36
Young's	3	10	30	8	24	1	3
Modulus							

Fatigue Strength	2	10	20	8	16	1	2
Cost	1	10	10	1	1	8	8
TOTAL		40	107	26	79	29	99

Tues-36

\rightarrow List your chosen material and justify your selection

Justification				
List Chosen	Steel			
Material:				
Steel was chosen as the	best material for several reasons, the first of which being that it was the			
best material according	to the decision matrix, both weighted and unweighted. Additionally, many of			
the other materials unde	r consideration have critical flaws, making them difficult to use within the			
constraints of the projec	t. The CFRP epoxy matrix, for instance, has a very high carbon footprint and			
it would be environment	ally damaging to produce, so it would be an unreasonable choice for an			
eco-friendly objective. W	lood is also flawed, as it would be very prone to warping due to moisture or			
splitting under high stres	splitting under high stress. It would also be difficult to carve wooden wind turbines blades, because			
of their physical structur	e. Steel was also a material that appeared in all the MPI charts showing its			
versatility and suitability	of steel. When analysing other materials such as wood or CFRP it becomes			
clear that they only exce	I in one area. CFRP is rated highly under both the mass MPI's but it has little			
to no presence under the	e CO2 emissions MPI because of its high CO2 emissions. Wood was the			
opposite strengths and v	weaknesses, showing how each of the other materials fail for this specific			
project, despite both rec	eiving high scores in the decision matrices. Overall, Steel was the best			
material for the job as it	works well in the setting of a wind turbine blade, and it has a low carbon			
emission.				

Summary of Chosen Material's Properties

Material Name: Steel	Average value:
Young's modulus E (GPa):	210 GPa : 200 - 220 GPa
Yield Strength σ_y (MPa):	295 MPa : 255 - 335 MPa
Tensile strength σ_{UTS} (MPa):	456 MPa : 379 - 532 MPa
Density ρ (kg/m ³):	7.81e3 kg/m ³ : 7.8e3 - 7.82e3 kg/m ³
Embodiment Energy H_m (MJ/kg)	30.8 MJ/kg : 29.3 - 32.3 MJ/kg
Specific carbon footprint CO_2 (kg/kg)	2.33 kg/kg : 2.21 - 2.44 kg/kg