Project Two – Get a Grip:

Design a System for Sterilizing Surgical Tools using Remote Sensing and Actuation

ENGINEER 1P13 – Integrated Cornerstone Design Projects

Tutorial 05

Team Tues-28

Julian Cecchini (cecchinj)

Luke West (westl5)

Luigi Quattrociocchi (quattrl)

Hetash Rattu (rattuh)

Submitted: December 10, 2020

Table of Contents

Academic Integrity Statement	3
Executive Summary	5
Project Schedule	7
Preliminary Gantt Chart	7
Final Gantt Charts	7
Logbook of Additional Meetings and Discussions	8
Scheduled Weekly Meetings 1	.7
Design Studio Worksheets	3
Milestone 0 2	:3
Milestone 1 2	:7
Milestone 2 4	-1
Milestone 3	8
Milestone 47	2
List of Sources	'5
Appendix A – Screenshots of Solid Model:7	'9
Appendix B – Engineering Drawings of Sterilization Container Design:	2
Appendix C – Screenshots of Computer Program:	34

Academic Integrity Statement

The student is responsible for performing the required work in an honest manner, without plagiarism and cheating. Submitting this work with my name and student number is a statement and understanding that this work is my own and adheres to the Academic Integrity Policy of McMaster University.

× Julian Ceechini

Julian Cecchini 400319506

The student is responsible for performing the required work in an honest manner, without plagiarism and cheating. Submitting this work with my name and student number is a statement and understanding that this work is my own and adheres to the Academic Integrity Policy of McMaster University.

Luke West 400310803

Х

The student is responsible for performing the required work in an honest manner, without plagiarism and cheating. Submitting this work with my name and student number is a statement and understanding that this work is my own and adheres to the Academic Integrity Policy of McMaster University.

Luigi Quattrociocchi 400318027

Quattrowoali × Ligi

The student is responsible for performing the required work in an honest manner, without plagiarism and cheating. Submitting this work with my name and student number is a statement and understanding that this work is my own and adheres to the Academic Integrity Policy of McMaster University.

Hetash Rattu 400324698

× Helost halles

Executive Summary

People in rural areas of Canada typically have less access to healthcare and must travel long distances to receive sterile surgery [1]. This issue gave rise to the main goal of the project: design a system to securely hold and transfer a surgical tool to be sterilized in an autoclave. Such a system would assist in the transfer and distribution of sterile equipment, increasing the accessibility of quality surgery for rural Canadians.

The project had two main segments: designing a container to hold the tool and implementing code to command a robotic arm to move that container. The design segment was a success. The container's constraints were all met as the final design weighed less than 350 grams, every feature exceeded 4 mm, and it was capable of fitting with the assigned footprint [1]. No structural faults prevent the container from meeting the objective of rigidity, nor does its mass fail the lightweight objective. The primary function was to allow for sterilization of a surgical tool, and our design maintained it by incorporating a cylindrical shape with rectangular slots that steam could enter. The friction-fit system through which the retractor enters the open end, hooks onto the bar at the other side, and falls in place onto the protrusion by its entrance allows for security, placement, and extraction of the tool. Lastly, the endpieces create stability, so the container does not roll during transfer, while their extended tops offer more surface area for the robot grip. The container's proposed design is promising and may be usable in the future for the transfer of sterile surgical tools.

The computing segment involved developing a workflow that encompassed five main tasks. The tasks were: identify the correct autoclave bin, open/close the gripper, move the robotic arm end-effector to a specified location, open/close an autoclave bin drawer, and continue/terminate the program based on an inventory of container objects given [1]. A combination of EMG muscle sensor input (one sensor for each arm) satisfies these tasks through the implementation of our program. For example, flexing the left arm while extending the right would change the angle of the robot effector gripper. Execution of the workflow's python implementation in the virtual environment under supervision found each task was successfully performed, demonstrating that the proposed workflow was correct. Our successful virtual trials prove that robots can have a practical application for the healthcare issue within Canada in transferring containers.

Through the completion of the container and code to the satisfaction of both the problem requirements and supervisor expectations (interview), it is clear the format for the second project allowed for a cohesive and productive team. Further experience in real-world problem-solving was provided through helpful design studio sessions and instruction given. The only issue was ambiguity initially found within the requirements for the design and code, but through communication among teammates as well as project staff, these were overcome. The result was a container and program that deserve further research to change the lives of real people.

Project Schedule

Preliminary Gantt Chart

26	Nov 2	Nov 9	Nov 16	Nov 23	Nov 30	Dec 7
	Milestone 0 - Determine team roles					
	Milestone 1 - Determine Objectives, Constraints,					
		Milestone 2 - Create low fidelity prototype (design				
		Mileston Pugh Ma	e 3 - preliminary and trix Worksheet (de			
				4 - create a model ent design in work		
				Work on r code	refining design and	
						verable/ Demon- oject to an IAI

Revised with new software, asana membership expired.

			1 2 3	3 4 5	67	89	10 11 1	12 13 1	4 15 16	17 18 19	20 21 2	2 23 24	25 26 2	7 28 29	30 1	2 3	4 5	678	9 10	0 11 12
TASK	START I	ND	SMI	רשז	FS	S M	τw	TFS	S M	тwт	F S	SМТ	WТ	FSS	ΜТ	WТ	F S	S M T	W T	FS
Milestone 0 - Cover page. Team charter. Preliminary gantt chart.	29-Oct	04-Nov																		
Milestone 1 - Pre-project assignment. List of objectives, constraints, and functions. Morphological analysis. Concept sketches.	29-Oct	04-Nov																		
Milestone 2 - Refined concept sketches. Computer program workflow. Low fidelity prototype. Workflow peer-review. Program Pseudocode.	05-Nov	11-Nov																		
Milestone 3 - Preliminary solid model. Preliminary program tasks. Pugh matrix. Code peer-review. Program task pseudocode.	10-Nov	18-Nov																		
Milestone 4 - Design review feedback from TA.	17-Nov	25-Nov																		
Refinement of design and code.	24-Nov	02-Dec																		
Final Deliverables - Design Report. Individual research summary. Self and Peer evaluation. Wix website learning portfolio.	01-Dec	09-Dec																		

Final Gantt Charts

			123	4 5 6 7	8 9 10 1	1 12 13 14	15 16 17 18	19 20 21 22	23 24 25 26	27 28 29 30	1 2 3 4	56789	9 10 11 12
TASK	START E	IND	SMT	WTFS	SMTW	VTFS	SMTW	T F S S	мтwт	FSSM	TWTF	SSMTW	VTFS
Milestone 0 - Cover page. Team charter. Preliminary gantt chart.	03-Nov	03-Nov											
Milestone 1 - Pre-project assignment. List of objectives, constraints, and functions. Morphological analysis. Concept sketches.	03-Nov	03-Nov											
Milestone 2 - Refined concept sketches. Computer program workflow. Low fidelity prototype. Workflow peer-review. Program Pseudocode.	08-Nov	10-Nov											
Milestone 3 - Preliminary solid model. Preliminary program tasks. Pugh matrix. Code peer-review. Program task pseudocode.	15-Nov	18-Nov											
Refinement of design and code.	23-Nov	30-Nov											
Milestone 4 - Design review feedback from TA.	01-Dec	01-Dec											
Design interview prep. Interview final deliverables.	02-Dec	03-Dec											
Final Deliverables - Design Report. Individual research summary. Self and Peer evaluation. Wix website learning portfolio.	06-Dec	10-Dec											

Logbook of Additional Meetings and Discussions

Note: * represents meetings outside of allotted time pertaining to project 2

Date:	Title & Purpose:	Time & Duration
Nov 3, 2020	Milestone 0 and 1	12:30 p.m 3 hours, 43 minut
	Members were introduced to	
	each other, took a group	
	picture, and discussed their	
	favorite video games.	
	Proceeded to throw ideas	
	back and forth for functions,	
	constraints, objectives, and	
	how the project is going to	
	shape up.	
Nov 4, 2020	Computations 4	11:30 a.m 2 hours, 15 minut
	Talked to Kevin Gilmore (TA)	
	about program for breaking	
	down lists of products and	
	assessing which ones meet	
	the specified standards.	

Nov 5, 2020	Graphics 4 Learned how to complete engineering drawings within inventor off a base template McMaster provided.	2:30 p.m 1 hour, 19 minutes
Nov 8 th , 2020	*Design sub-team Luke and Julian met up to talk about refined sketch ideas and plans to execute prior to milestone 2.	11:30 pm - 1 hour
Nov 10 th , 2020	TA progress meeting: -discussed progress on workflow for computer sub- team and refined sketches for design sub-team -filled in agenda	1:00 p.m. 10 minutes
	Milestone 2: Design sub- team meeting: formed prototypes in communication with each other. Attempted to inhibit biases from reaching each other.	1:05 p.m. 2 hours, 40 minutes
	Milestone 2: Computations sub-team: compared flow- charts and made pseudocode.	1:05p.m. 2 hours, 40 minutes
Nov 11 th , 2020	Lab B Q-labs started Worked for a prolonged period in Q-labs. Learned to have the robot act autonomously eventually after trial and error.	12:15 p.m. 3 hours
Nov 12 th , 2020	Graphics Lab 5 - Assembling glasses	2:30 p.m. 2 hours, 10 minutes

- Discussed methods of	
constraining parts such as	
insertion or mating.	
Milestone 3: Design Sub-	1:00 p.m. 2 hours, 28 minutes
team:	
Critiqued each other's	
prototype models through	
matrix and discussed	
improvements for the future.	
Milestone3: Computations	1:00 p.m. 2 hours
Sub-Team	
Compared pseudocode and	
discussed issues found in	
attempting to abstract the	
coding process according to	
information given.	
Week 9 Project TA Meeting	1:10 p.m. 20 minutes
started	
Met with our TA Michelle	
Pham and discussed our	
progress from previous	
milestone.	
Materials Lab – Flexor	2:00 p.m. 1 hour
Sensors	
Discussed material quiz and	
methodically went over	
answers.	
Computations 5	3:00 p.m. 3 hours
Went over I/O methods in	
python along with methods	
to extrapolate info from files.	
Ended up creating our own	
.txt files.	
	constraining parts such as insertion or mating. Milestone 3: Design Sub- team: Critiqued each other's prototype models through matrix and discussed improvements for the future. Milestone3: Computations Sub-Team Compared pseudocode and discussed issues found in attempting to abstract the coding process according to information given. Week 9 Project TA Meeting started Met with our TA Michelle Pham and discussed our progress from previous milestone. Materials Lab – Flexor Sensors Discussed material quiz and methodically went over answers. Computations 5 Went over I/O methods in python along with methods to extrapolate info from files. Ended up creating our own

Nov 24 th , 2020	TA Progress Meeting -discussed adjustments made to pseudocode as per Dami's instructions -talked about improvements made to models as was discussed the week before -planned to have code finalized along with choosing the good copy model design.	1:15 p.m. 10 minutes
	*Design Sub-team prep for M4: -discussed pros and cons of each design -tested print times in 3D software and found barrel design to be much more accommodating of time constraint (1 hour without support) -Ryan Isaac discussed with us about design press fitting for barrel design, gave some tips about what to research and place fourth as a consideration for our final deliverable (press-fit)	1:00 p.m. 2 hours, 40 minutes

	*Computations Sub-team prep for M4:	1:00 p.m. 2 hours, 30 minutes
	 experimented around with positions in Q-labs and adjusted the code to grab the container -had to be within precision of 0.1 degrees to ensure gripper fingers did not phase through floor -left some position adjustments within the code to be finished for upcoming week 	
Nov 25 th ,2020	Hip Implant Materials Lab -Used Granta to conduct material selection which would be ideal for a hip implant (reference week 10 lab B) Conclusion: Tensile strength, Shear modulus, CO2 footprint, Fatigue strength, Mechanical loss coefficient Final choices: Titanium, Stainless steel, Cobalt- chromium alloys	1:00 p.m. 50 minutes
	*Determining Project Interview Discussed when it would be optimal to book interview.	9:35 p.m. 20 minutes
Nov 28 th , 2020	*Final Design Consultation Design sub-team completed some final edits for the g- code file of their container	3:00 p.m. 2 hours

	after designing a better	
	system for securing the tool.	
	All constraints were thought	
	to be met but further	
	discussion will be done with	
	the TA before submitting G-	
	code	
Nov 30 th , 2020	*G-code consultation for	12:30 p.m. 3 hours
	interview submission w/ IAI	
	(Dami Oriole)	
	Discussed final concerns of	
	container involving its fillets	
	and possible combination	
	into a one file instead of a	
	press-fit which may have not	
	coincided with constraints. It	
	was found the fillets (2.5	
	mm) were unsafe to do with	
	the size of our parts and it	
	was necessary to either	
	create a gap between the	
	storage barrel and outer	
	rectangular prisms for a	
	press-fit (assembly) or to	
	lengthen the rectangular	
	prisms all around to ensure	
	4mm constraint was met	
	with edge of storage barrel	
	(single part). The fillets were	
	discarded, and it was elected	
	to go with the press-fit for	
	submission. It was also found	
	the object needed to be	
	dissected into a cross section	
	to be printed with minimal	
	support.	
	1	

	*Team Meeting for deliberations of submissions Team was pulled together to discuss what needed to be handed in before the design studio that was a day ahead. Roles were also assigned for research of biomedical devices.	4:30 p.m. 1 hour
Dec 1 st , 2020	Design Review w/ TA No issues listed with either sub-team except for inconsistency with box placement within the simulation via the computations sub-team. Tweaking will be attempted.	12:45 p.m. 30 minutes
	*Post TA interview discussion/M4 Discussed interview, what was necessary to hand-in, plans for FD, and what each team member should look at finishing.	1:15 p.m. 2 hours
Dec 2 nd , 2020	Research breakout room 1 Attempted an executive summary and power point corresponding to the topic of gallium.	1:00 p.m. 2 hours

	Ga LED recycling PowerPoint Finished the latter part of the previous assignment with decorative designs and due deliberation.	5:30 p.m. 1 hour, 30 minutes
	*Design sub-team Finished constraining tool and set up assembly file via pack-n-go for submission to M4 and sterilization container drop-boxes.	7:00 p.m. 2 hours
	*Computing sub-team Finalized code for computer program drop-box by adding in comments and testing consistency of runs. Ultimately, handed it in and reconvened with design team to discuss preparation for the interview on the following day.	8:00 p.m. 2 hours
Dec 3 rd , 2020	*Design sub-team interview prep Went through possible questions about designing the model or different parts.	2:00 p.m. 30 minutes
	*Computations sub-team interview prep Went back over code and recorded runs for evidence when discussing consistency of Q-lab runs.	2:00 p.m. 30 minutes

	*Post interview Discussed how the interview went for each sub-team, congratulated each other on results, and planned to meet	3:00 p.m. 30 minutes
	for final deliverable.	
Dec 6 th , 2020	*Final Deliverable Meeting	8:00 p.m. 4 hours
	Discussed breakdown of	
	responsibilities for final	
	deliverable template, what to	
	do complete before the 9 th ,	
	and onion soup.	

Scheduled Weekly Meetings

ENGINEER 1P13 MEETING WITH TEAM TUES-28 - TUESDAY, NOV. 10,

2020

ATTENDANCE

Role	Name	Mac ID	Attendance (Yes/No)
Manager	Luke West	westl5	Yes
Administrator	Luigi Quattrociocchi	quattrl	Yes
Coordinator	Julian Cecchini	cecchinj	Yes
Subject Matter Expert	Hetash Rattu	rattuh	Yes
Guest	Ryan McIsaac	N/A	Yes

AGENDA ITEMS

- 1. Catching up with the computing sub-team (workflow diagrams)
- 2. Catching up with modelling sub-team (preliminary refined sketches)

MEETING MINUTES

- 1. Attendance & Updates
 - a. Everyone is present.
 - b. Team is somewhat stressed. Midterms have returned and members are preparing.
 - c. Discussed meetings or lack thereof members underwent with respective sub-teams before design studio
 - d. Expressed origination of ideas (referenced project module for workflow of coding sub-team)
- 2. Issues from past week

a. None

- 3. Discuss changes from last week's model/code
 - Added more detail to sketches from milestone 1 while ensuring they held true to objectives
- 4. Action Items for next meeting
 - a. Preliminary Solid Model Worksheet and Program Tasks Worksheet (individual)
- 5. Final Notes
 - a. Discussed relation between logbook and agenda
 - b. Team members offered help to anyone struggling in their studies

POST-MEETING ACTION ITEMS

- 1. Finish Low-Fidelity Prototypes and record observations [Modelling]
- 2. Find out which surgical tool will be used [Modelling]
- 3. Understand how muscle sensors will eventually factor into code [Computations]

1

ENGINEER 1P13 MEETING WITH TEAM 1 - TUESDAY, Nov 17th, 2020

ATTENDANCE

Role	Name	Mac ID	Attendance (Yes/No)
Manager	Luke West	westl5	Yes
Administrator	Luigi Quattrociocchi	quattrl	Yes
Coordinator	Julian Cecchini	Cecchini	Yes
Subject Matter Expert	Hetash Battu	rattuh	Yes
Guest	Michelle Pham	N/A	Yes

AGENDA ITEMS

- 1. Attendance, updates on how everyone is doing
- 2. Discuss last design studio: What did each sub-team accomplish? Any Issues/Problems?
- 3. Discuss what was done between design studios (i.e., preliminary cad models, Initial code)
- 4. Discuss what is to be done for today's design studio, and deliverables
- 5. Final notes, extra significant points

MEETING MINUTES

- Attendance & Updates
 - a) Everyone is present.
 - b) Team is a little less stressed. Midterms are almost over.
 - All work was done (individual worksheets were done in isolation so members were not influenced by each other's ideas)
- 2) Issues from past week
 - a) Coding team had issues with ambiguity of code guidelines
 - i) <u>Dami</u> gave clarification
- 3) Discuss changes from last week's model/code
 - a) Specific models were chosen to be further scrutinized for final design
 - b) Bare bones of code were conceptualized through workflow
- 4) Action Items for next meeting
 - a) Modelling sub-team: design creation in inventor and generate G-code
 - b) Computations sub-team: Translate part of workflow into a python program.

1

- 5) Final Notes
 - a) Members have been encouraged to meet outside of design studio time to refine model and code.

ENGINEER 1P13 MEETING WITH TEAM 1 - TUESDAY, Nov 17th, 2020

POST-MEETING ACTION ITEMS

- 1. Finish comparing and critiquing models via Pugh matrix [Modelling]
- Discuss improvements to make upon workflow/pseudocode before implementing it within Python [Computations]

ENGINEER 1P13 MEETING WITH TEAM 1 - TUESDAY, Nov 24th, 2020

ATTENDANCE

Role	Name	Mac ID	Attendance (Yes/No)
Manager	Luke	westl5	Yes
Administrator	Luigi <u>Quattrociocchi</u>	guattrl	Yes
Coordinator	Julian Cecchini	cecchini	Yes
Subject Matter Expert	Hetash Rattu	rattuh	Yes
Guest	None	-	-

AGENDA ITEMS

- 1. Attendance & Updates
- What has been accomplished since last studio (i.e., improvements in code/ CAD design), both teams
- What needs to be done this studio (i.e., finishing code/choosing and refining final CAD design), both teams
- 4. Discuss any issues

MEETING MINUTES

- 1) Attendance & Updates
 - a) Everyone is present.
 - b) Team is generally happy; exams are in view, but midterms are over.
 - c) Designs were successfully modelled, and code was partially implemented.
 - d) It was found modelling sub-team met in a call outside of arranged time to discuss design improvements while coding sub-team simply texted each other.
 - e) Cylinder container was chosen for final interview
- 2) Issues from past week
 - a) Modelling team was unsure about whether certain parts of their designs met length constraints or not.
 - Dami was consulted along with TA. It was found everything was relatively good, but fillets were risky.
- 3) Discuss changes from last week's model/code
 - a) Models were improved upon criticism via Pugh matrix from previous week and code was further refined to meet specifications of project as defined by <u>Dami</u>.
 - b) With the code now implemented in python, team was able to work within the simulated environment.

1

ENGINEER 1P13 MEETING WITH TEAM 1 - TUESDAY, Nov 24th, 2020

4) Action Items for next meeting

 Gather all necessary items for upcoming review session in M4 and start constructing questions for future interview.

5) Final Notes

- c) Teammates are pleased with each other, and it seems all aspects of the project are more than adequate.
- b) No milestone was handed in, week of December 1st will involve M4.

POST-MEETING ACTION ITEMS

- Consult IAI/TA for specifics about container pertaining to new fillets after modification and supports used for printing [Modelling]
- Discuss with IAI/TA some confusion about the implementation of muscle emulators within code [Computations]

ENGINEER 1P13 MEETING WITH TEAM 1 - TUESDAY, Dec 1st, 2020

ATTENDANCE

Role	Name	Mac ID	Attendance (Yes/No)
Manager	Luke	westl5	Yes
Administrator	Luigi <u>Quattrociocchi</u>	quattrl	Yes
Coordinator	Julian Cecchini	cecchini	Yes
Subject Matter Expert	Hetash Battu	rattuh	Yes
Guest	-	-	-

AGENDA ITEMS

- 1. Attendance & Updates
- 2. What did the computing team accomplish in the last week? (show off/explain finalized code)
- 3. What did the modelling team accomplish in the last week? (show off/ explain finalized design)
- 4. Explain issues or hurdles from the last week
- 5. Final Remarks/additions/prepare for upcoming design review

MEETING MINUTES

- 1. Attendance & Updates
 - Everyone is present.
 - b. Team is well prepared; each component has been prepared for the interview
 - No major issues were found by TA, all parts of the project were given the greenlight for submission.
 - d. Minor hiccup with consistency of box placements discussed further in M4 worksheet
- 2. Issues from past week
 - a. Modelling sub-team had to consult an IAI or TA about how to cut figure for g-code
 - i. Bassem aided members and instructed them on how to cut it for the print
- 3. Discuss changes from last week's model/code
 - a. Implemented a friction-fit system for securing the tool in chosen design.

1

- b. Code is commented fully along with slight changes to the implemented coordinates of the boxes. Also, muscle emulator is fully functional.
- 4. Action Items for next meeting

ENGINEER 1P13 MEETING WITH TEAM 1 - TUESDAY, Dec 1st, 2020

- a. No further planned meetings but objectives lie mainly in completing the finalized Gantt chart and doing independent research summaries for tools
- b. Prepare all resources for final deliverable
- 5. Final Notes
 - a. It was a fun project and members enjoyed the synergy gained between them.

POST-MEETING ACTION ITEMS

- 1. Transfer igt files for administrator to upload
- 2. Prepare interview questions for Thursday, December 3rd

Design Studio Worksheets

Milestone 0

PROJECT TWO: MILESTONE 0 – COVER PAGE Team

Number:

Tues-28

Please list full names and MacID's of all *present* Team Members

Full Name:	MacID:
Julian Cecchini	cecchinj
Luke West	westl5
Luigi Quattrociocchi	quattrl
Hetash Rattu	rattuh

Insert your Team Portrait in the dialog box below

Incoming Personnel Administrative Portfolio:

Prior to identifying Leads, identify each team members incoming experience with various **Project** Leads

	Team Member Name:	Project Leads
1.	Julian Cecchini	$\boxtimes M \square A \square C \square S$
2.	Luke West	$\Box M \Box A \boxtimes C \Box S$
3.	Luigi Quattrociocchi	$\Box M \Box A \Box C \boxtimes S$
4.	Hetash Rattu	$\Box M \boxtimes A \Box C \Box S$
		$\Box M \Box A \Box C \Box S$

To 'check' each box in the Project Leads column, you must have this document open in the Microsoft Word Desktop App (not the browser and not MS Teams)

Project Leads:

•

Identify team member details (Name and MACID) in the space below.

Role:	Team Member Name:	MacID
Manager	Luke West	westl5
Administrator	Luigi Quattrociocchi	quattrl
Coordinator	Julian Cecchini	cecchinj
Subject Matter Expert	Hetash Rattu	rattuh

MILESTONE 0 – PRELIMINARY GANTT CHART (TEAM MANAGER ONLY)

Team Number: Tues-28

Full Name of Team Manager:	MacID:
Luke West	west15

Preliminary Gantt chart

Milestone 1

MILESTONE 1 (STAGE 1) – PRE-PROJECT ASSIGNMENT

Team Tues-28 Number:

You should have already completed this task individually prior to Design Studio 7.

- 1. Copy-and-paste each team member's list of objectives, constraints and functions on the following pages (1 team member per page)
 - a. Be sure to indicate each team member's Name and MacID

We are asking that you submit your work on both worksheets. It does seem redundant, but there are valid reasons for this:

- Each team member needs to submit their list of objectives, constraints and functions with the **Milestone One Individual Worksheets** document so that it can be *graded*
- Compiling your individual work into this **Milestone One Team Worksheets** document allows you to readily access your team member's work
 - This will be especially helpful when completing *Stage 2* of the milestone

Name: Julian Cecchini	MacID: cecchinj		
Objectives:			
Identifiable by colour and size			
High durability, does not deform	n easily		
Heat resistant for possible stear	n sterilization		
 Tool's weight is balanced well a 	round grip		
Constraints:			
Thicker than 4mm			
Minimum of 80mm in width			
Maximum of 170mm in width			
 Scaled down design does not ex 	 Scaled down design does not exceed 350g in mass 		
No excessively complex parts w	 No excessively complex parts which would cause print replication time to exceed 2 hours; 		
simple			
Function:			
Can contain surgical tools			
Allows surgical tools to be steril	Allows surgical tools to be sterilized		
Can be held by effector grip	Can be held by effector grip		
Secures tools during travel			

Name: Luke West	MacID: westl5		
Objectives			
 Container should be lightweight, 	, to be able to be held by the robot		
 Container should be rigid, to be a 	able to hold its shape		
 Container should be temperatur 	e resistant, to withstand steam		
Container: unreactive with clean	ing chemicals		
Constraints			
Container: base must fit within t	Container: base must fit within the autoclave		
Container: All features must be greater than 4mm in size			
 Container must fit securely in between the gripper of the robot (not too big or too small) 			
Container: Mass cannot exceed 3	Container: Mass cannot exceed 350 grams		
Functions			
Container must hold tools secure	ely		
Container must allow sterilization of tools through use of steam			
Container must be able to be he	ld by the robotic arm		

Name: Luigi Quattrociocchi	MacID: quattrl
Objectives	
Should be resistant to high temperatures	
Should be lightweight	
Should be chemically inert	
Constraints	
 Must not exceed 350 grams 	
 Must have all features exceeding 4mm 	
Must fit in autoclave	
Functions	
Be able to securely house tools	
Be able to be picked up by arm	
Be able to allow sterilization of contents	

Name: Hetash Rattu	MacID: rattuh				
Objectives (should be)					
Hold medical Instruments					
Allows fluid to be stored	Allows fluid to be stored				
Allows fluid to leave	Allows fluid to leave				
Constraints					
4mm is the smallest dimension	4mm is the smallest dimension				
Must be bigger than the instruments					
 Must have opening so arm can add the medical instruments 					
Functions (What is does)					
House fluids					
Accepting equipment					
Transfer Equipment					

*If you are in a team of 5, please copy and paste the above on a new page

MILESTONE 1 (STAGE 2) – LIST OF OBJECTIVES, CONSTRAINTS, AND FUNCTIONS

Team Tues-28 Number:

- 1. As a team, create a final a list of objectives, constraints, and functions in the table below.
 - \rightarrow Use your individual *Pre-Project Assignment* to build your team's final list
 - \rightarrow The exact number you should have depends on what information you have gathered from the Project Pack.

Objectives	Constraints	Functions	
Should be resistant to high	All features must be greater	Tools should be able to be	
temperatures	than 4mm	placed and extracted from	
		the container	
Should have a distinct colour	Scaled down weight does not	Be able to securely house	
	exceed 350 g	tools	
Should be chemically inert	Complexity of parts if	Be able to able to be picked	
	minimum; print time of	up by the robot arm	
	replication cannot exceed 2		
	hours		
Should be lightweight	Max 170 mm min 80 mm	Must allow sterilization of	
		tools by steam	
Should be rigid and hold its	Base must fit within the	Base must be able to remain	
shape	autoclave	inside its respective	
		autoclave	
	Caters towards effector grip		

2. What is the primary function of the entire system?

Must allow sterilization of tools by steam

3. What are the secondary functions?

Tools should be able to be placed and extracted from the container Be able to securely house tools Be able to able to be picked up by the robot arm

MILESTONE 1 (STAGE 3) – MORPHOLOGICAL ANALYSIS

- 1. Identify multiple means to perform the secondary functions that your team came up with during Stage 1 of this milestone. One sub-function (pick up) is already listed for you. The other two sub-functions are for your team to choose.
 - → Make sure that every mean for the "pick up" sub-function assumes that the end effector of the robot arm is a gripper. The means for your other sub-functions do not need to follow this assumption.

Function	Means					
Pick up	Grooves on side	Lip around upper edge	Fork-lift style holes for fingers	Squeezable part	Rough surface	Rectangular prisms sticking out for effector fingers
House tools	Snap in component for tool	Tools loose in container	Magnets	Adhesive of sorts (like a tape)	Padding on inside	Flaps
Place/Extract	Hinged lid	Removable lid	Angled tube where it could be grabbed	Spring mechanism (think AAA batteries)	Suction cups within	Sliding out drawer

MILESTONE 1 (STAGE 4) – CONCEPT SKETCHES Team Tues-28 Number:

Complete this worksheet *after* having completed stage 3 as a team *and* after having *individually* created your concept sketches.

- 1. Each team member should copy-and-paste the photo of their individual concept sketches in the space indicated on the following pages
 - → The photo's should be the same one your included in the **Milestone One Individual** Worksheets document
 - \rightarrow Be sure to include your **Team Number** on each page
 - \rightarrow Be sure each team member's **Name** and **MacID** are included with each sketch

We are asking that you submit your work on both worksheets. It does seem

redundant, but there are valid reasons for this:

- Each team member needs to submit their sketch with the Milestone One Individual Worksheets document so that it can be graded
- Compiling your individual work into this **Milestone One Team Worksheets** document allows you to readily access your team member's work

Milestone 2

MILESTONE 2 (STAGE 1) – REFINED CONCEPT SKETCHES (MODELLING SUB-TEAM)

Team Tues-28 Number:

You should have already completed this task individually prior to Design Studio 8.

1. Copy-and-paste each sub-team member's refined sketch on the following pages (1 sketch per page)

 \rightarrow Be sure to indicate each team member's Name and MacID

We are asking that you submit your work on both worksheets. It does seem

redundant, but there are valid reasons for this:

- Each team member needs to submit their refined concept sketches with the **Milestone Two Individual Worksheets** document so that it can be *graded*
- Compiling your individual work into this Milestone Two Team Worksheets document allows you to readily access your team member's work
 - This will be especially helpful when completing *Stage 3* of the milestone

MILESTONE 2 (STAGE 2) – COMPUTER PROGRAM WORKFLOW (COMPUTATION SUB-TEAM)

Team Tues-28 Number:

You should have already completed this task individually prior to Design Studio 8.

1. Copy-and-paste each team member's storyboard or flowchart sketches on the following pages (1 team member per page)

ightarrow Be sure to indicate each team member's Name and MacID

We are asking that you submit your work on both worksheets. It does seem redundant, but there are valid reasons for this:

- Each team member needs to submit their storyboard/flowchart with the **Milestone Two Individual Worksheets** document so that it can be **graded**
- Compiling your individual work into this Milestone Two Team Worksheets document allows you to readily access your team member's work
 - This will be especially helpful when completing *Stage 4* of the milestone

MILESTONE 2 (STAGE 3A) – LOW-FIDELITY PROTOTYPE (MODELLING SUB-TEAM)

Team Tues-28 Number:

Complete this worksheet <u>during</u> design studio 8 after creating the low-fidelity prototypes.

- 1. Take multiple photos of your low-fidelity prototypes
 - \rightarrow Include an index card (or similar) next to the prototype, clearly indicating your Team Number, Name and MacID on <u>each</u> sketch
- 2. Insert your photo(s) as a Picture (Insert > Picture > This Device)
- 3. Do not include more than two prototype photo's per page

Make sure to include photos of <u>each</u> team member's prototype

MILESTONE 2 (STAGE 3B) – LOW-FIDELITY PROTOTYPE OBSERVATIONS (MODELLING SUB-TEAM)

Team Tues-28 Number:

As a team, document your observations for each low-fidelity prototype. Make sure to label your observations to indicate which prototype it belongs to. As a starting, consider the following:

(note, this does not fully encompass all discussion points)

- \rightarrow Advantages and disadvantages of each prototype
- \rightarrow Extent to which each concept aligns (or does not align) with the <u>List of Objectives</u>, <u>Constraints</u>, and <u>Functions</u> you came up with for Milestone 1
- ightarrow Reliability of the design in picking up the surgical tool
- \rightarrow Reliability of the design in securing the surgical tool
- ightarrow Extent to which it allows for tool sterilization

Prototype – Julian Cecchini/cecchinj's design prototyped by Luke West/westl5 (displayed first)

- Advantage: can be picked up or dropped off in different orientations (once tool is inside cylinder, it can take on each orientation the rectangular-prism blocks provide)
- Advantage: Overall design has design low complexity (I.e., no sliding parts & small number of components)
- Disadvantage: original design has a lot of thinned out parts that may need to be reconsidered for the minimum thickness of 5 mm in the 3D printing process.
- Disadvantage: The area where the robot grips the container is circular, while gripper is square, therefore, the robot may have trouble gripping the container. Thus depending on the size of the tool that it must contain, it may be less reliable for pick up via the robot arm.
- Is reliable for securing the surgical tool via internal protrusions.
- Of our objectives, it fulfills being rigid and should be lightweight as there's no excessively large component. Constraint-wise: it possibly fails complexity goal, but further analysis is needed to determine this. Lastly, it fulfills the functions of securing the tool, being sterilizable by steam, and being picked up by the robotic arm. The rest are indeterminable as the dimensions and material are still unknown.
- Unique in concept, untypical to find containers which stray so far from a rectangular prism.
- Since cardboard toilet paper was used for cylinder, holes in central tube resulted in loss of structural integrity therefore, a stiff material must be used.

• As mentioned, allows for a high level of sterilization through cut out spots along central cylinder (steam can enter and exit with relative ease).

Prototype – Luke West/westl5 's design prototyped by Julian Cecchini/cecchinj (displayed second)

- Advantage: spacious, allows for any range of tools (versatile).
- Disadvantage: hole size/number may need to be modified in order to accommodate for 3D printing.
- Advantage: Easily gripped by robot, stable/secure holding of tool.
- Disadvantage/modification: The grooves that the robot grips are a potentially excessive use of filament. May need to shorten as needed.
- Since there are holes everywhere, very reliable for sterilization.
- Can be easily modified (sized up or down) to accommodate different sizes
- Objectives: Fulfills rigidity, fulfills the constraints and functions in the same way as mentioned for the first model.
- Sliding mechanism is both aesthetic and useful. Adds some flair to the design.
- Unlike first prototype, resizing won't affect the robot's ability to grip it

(From previous milestone, table of objectives constraints, and functions)

Objectives	Constraints	Functions
Should be resistant to high	All features must be greater	Tools should be able to be
temperatures	than 4mm	placed and extracted from
		the container
Should have a distinct	Scaled down weight does	Be able to securely house
colour	not exceed 350 g	tools
Should be chemically inert	Complexity of parts if	Be able to able to be
	minimum; print time of	picked up by the robot arm
	replication cannot exceed 2	
	hours	
Should be lightweight	Max 170 mm min 80 mm	Must allow sterilization of
		tools by steam
Should be rigid and hold its	Base must fit within the	Base must be able to
shape	autoclave	remain inside its respective
		autoclave
	Caters towards effector grip	

MILESTONE 2 (STAGE 4A) – WORKFLOW PEER-REVIEW (COMPUTATION SUB-TEAM)

Team Tues-28 Number:

As a team, document your observations, specifically any similarities and differences between each team member's visual storyboard or flowchart in the table below.

Differences:

- One workflow was in the form of a flowchart while the other was a storyboard
 - Flowchart was chosen for more organized workflow
 - Storyboard was chosen for visual representation of workflow
 - o Both methods are valid for this workflow
- Moving to home position was described differently: storyboard was more specific
 - Flowchart assumed the home process would be premade and consistent
 - Storyboard manually rotated to the zero position
 - \circ $\;$ Flowchart is recommended as there is an existing arm.home() method $\;$
- Flowchart had decision processes while storyboard was vaguer about deciding which autoclave bin each container would go to
 - Flowchart decides which location to move to based on ID (colour and size)
 - Storyboard didn't take into account that there would be differences in ID
- Flowchart had decision process to open and close drawer while storyboard did not
 - Flowchart realized drawer only needs to be opened if container is large
- Storyboard detailed movements and rotations of arm, while flowchart did not
 - Storyboard was specific about each movement of the Q-arm

Similarities:

- Both workflows described the moving of container to the proper autoclave bin
- Both described action of picking up and container by gripping the container
- Both described moving container to its correct autoclave bin
- Both had a looping structure that would iterate for every container

MILESTONE 2 (STAGE 4B) – PROGRAM PSEUDOCODE (COMPUTATION SUB-TEAM)

Team Tues-28 Number:

As a team, write out a pseudocode outlining the <u>high-level workflow</u> of your computer program in the space below.

Start
Arm moves to home position
Place container on pick-up platform
Determine which color the container is based on ID
Position arm at pick up platform
Close gripper
Position arm over corresponding colored autoclave bin location
If container ID is large size
Open corresponding colored autoclave drawer
Open gripper
If container ID is large size
Close corresponding colored autoclave drawer
Arm moves to home position
Repeat for all containers
Stop

Milestone 3

MILESTONE 3 (STAGE 1) – PRELIMINARY SOLID MODEL (MODELLING SUB-TEAM)

Team Tues-28 Number:

You should have already completed this task individually prior to Design Studio 9.

1. Copy-and-paste each team member's screenshots of their preliminary solid model on the following pages (1 team member per page)

ightarrow Be sure to clearly indicate who each model belongs to

We are asking that you submit your work on both worksheets. It does seem redundant, but there are valid reasons for this:

- Each team member needs to submit their solid model screenshots with the **Milestone Three Individual Worksheets** document so that it can be *graded*
- Compiling your individual work into this Milestone Three Team Worksheets document allows you to readily access your team member's work
 - This will be especially helpful when completing *Stage 3* of the milestone

*If you are in a sub-team of 3, please copy and paste the above on a new page

MILESTONE 3 (STAGE 2) – PRELIMINARY PROGRAM TASKS (COMPUTATION SUB-TEAM)

Team Tues-28 Number:

You should have already completed this task individually prior to Design Studio 9.

1. Copy-and-paste each team member's code screenshots on the following pages (1 team member per page)

ightarrow Be sure to clearly indicate who each code belongs to

We are asking that you submit your work on both worksheets. It does seem redundant, but there are valid reasons for this:

- Each team member needs to submit their code screenshots with the Milestone Three Individual Worksheets document so that it can be graded
- Compiling your individual work into this Milestone Three Team Worksheets document allows you to readily access your team member's work
 - This will be especially helpful when completing *Stage 4* of the milestone

```
Team Tues-28
Number:
```

Name: Luigi Quattrociocchi	MacID: quattrl	
<pre>def identify_autoclave_bin_location(container_id):</pre>		
	cribing x, y, z coordinates of the corresponds to the given container id	
<pre>>>> identify_autoclave_bin_locatio [-0.6099, 0.2464, 0.3784]</pre>	n(1)	
<pre>>>> identify_autoclave_bin_locatio</pre>	n(0)	
[0.4064, 0.0, 0.4826]		
<pre>if container_id == 1: # small red</pre>		
return [-0.6099, 0.2464, 0.378	3	
<pre>if container_id == 2: # small gree return [0.0, -0.6578, 0.3784]</pre>	n	
if container_id == 3: # small blue		
return [0.0, 0.6578, 0.3784]		
<pre>if container_id == 4: # large red</pre>		
return [-0.394, 0.1592, 0.2374 if container_id == 5: # large gree	2	
return [0.0, -0.4249, 0.2374]		
if container_id == 6: # large blue		
return [0.0, 0.4249, 0.2374]		
<pre># base case home position</pre>		
return [0.4064, 0.0, 0.4826]		
11417 94747		

Name: Hetash Rattu	MacID rattuh
In []:	<pre>def moveeffector (): if arm>= thres arm.move_arm(0,0,0) #starting position time.sleep(2) arm.move() #move to the given position time.sleep(2)</pre>

*If you are in a sub-team of 3, please copy and paste the above on a new page

MILESTONE 3 (STAGE 3) – PUGH MATRIX (MODELLING SUB-TEAM)

Team Tues-28 Number:

1. As a team, evaluate your designs for the sterilization container in the table below

- ightarrow List your Criteria in the first column
 - You should include a minimum of 5 criteria
- ightarrow Fill out the table below, comparing your designs against the given baseline
 - Replace "Design A" and "Design B" with more descriptive labels (e.g., a distinguishing feature or the name of the student author)
 - Assign the datum as the baseline for comparison
 - Indicate a "+" if a concept is better than the baseline, a "-" if a concept is worse, or a "S" if a concept is the same

	Datum -	Sliding Lid	Barrel Design
	Standard Box	Design	
Sterilization	S	S	S
Stabilization	S	S	-
Rigidity	S	-	S
Mass	S	S	S
Complexity/	S	-	-
Printability			
Ability to grip	S	+	S
Total +	0	1	2
Total –	0	2	0
Total Score	0	-1	-2

*For a team of 3, click the top-right corner of the table to "Add a New Column"

2. Propose one or more suggested design refinements moving forward

Julian: barrel design

- Adjust design for securing the tool to ensure it will not fall out after excessive shaking
- Reduce complexity of internal parts by reducing overhangs and/or total number of parts for the sake of the 3D printer process.
- Make container easier for effector to latch onto (original intention was barrel but upon examination it may be too small, therefore, the rectangular prisms will likely be given that purpose instead)
- Possibly adjust dimensions so it is more spacious in autoclave

Luke: sliding lid design

- Add thickness to lid for strength/structural integrity
- Make more room so that the sliding mechanism fits less snug within the groove and leaves more room for printer error.
- Reinforce part where robot grips the lid/container in order to keep it rigid under the force of the gripper
- Possibly resize so it completely fits in autoclave without protruding upward

Note: Decide final design concept before wk-10.

MILESTONE 3 (STAGE 4A) – CODE PEER-REVIEW (COMPUTATION SUB-TEAM)

Team Tues-28 Number:

Document any errors and/or observations for each team member's preliminary Python program

in the space below

Identify Autoclave Bin Location	Team Member Name: Luigi	
Task	Quattrociocchi	
There were no error found in the code.		
Code worked in the Q-labs environment		
There are comments that relate the bin number to the colour and size		
If statements could be replaced with elif statements		
Locations may not be exactly correct and m	ay need to be modified	
Move End-Effector Task	Team Member Name: Hetash Rattu	
Code would not compile:		
 Missing colon after if statement 		
 Missing indentation after if statement 		
 arm does not have a move() method 		
 thres is not defined 		

- function should take parameters for x, y, z coordinates
- arm should move to specified location
- arm >= thres is not a valid comparison (object to number)
- should use arm.emg_left() or arm.emg_right() methods
- 0, 0, 0 is not the exact home position
- a few short comments

MILESTONE 3 (STAGE 4B) – PROGRAM TASK PSEUDOCODE (COMPUTATION SUB-TEAM)

Team Tues-28 Number:

As a team, write out the pseudocode for each of the *remaining* tasks in your computer program in the space below.

Control Gripper

Define threshold value
Define Control Gripper function with open or close flag passed in
Begin indefinite loop
Check muscle sensor values
Wait until right arm is flexed (above threshold) and the left arm is fully extended
Fully open or close the fingers of the gripper (based on flag)
Break out of indefinite loop

Open Autoclave Bin Drawer

Define threshold value		
Define Open Autoclave Bin Drawer function with open or close flag and container id		
If container is large		
Begin indefinite loop		
Wait until both arms are flexed		
Decide which drawer to open based on container color (red, green, or		
blue respectively)		
Open or close the corresponding colored autoclave drawer based on the		
flag		
Break out of indefinite loop		
Break out of indefinite loop		

Continue or Terminate

Track all containers which have not been placed yet using a list

Loop while all containers have not been successfully placed in their correct autoclave bins yet (list is not empty)

Choose a random container to place next

Pick up and place the next container in its correct autoclave bin

Remove placed container from "containers that have not been placed" list

Once loop is finished, terminate the program

Milestone 4

MILESTONE 4 (STAGE 3) – DESIGN REVIEW FEEDBACK (MODELLING SUB-TEAM)

Number:

Use the space below to document mentor feedback for your design.

Inventor File comments:
-none
G-code comments:
-none
Constraints Met:
Mass of 350 g or less
 Length of 4mm or greater for all features
Print time under 2 hours
Sterilization
Tool Security
Go without warning

Use the space below to propose design refinements based on the feedback.

Based on the feedback, our design does not require improvements. However, prior to the design review many crucial improvements were made, such as redesigning the securing method of the tool, splitting our design into 4 pieces rather than 3 by cutting the tube into cross-sections to allow for easier 3D printing (i.e., supports can more easily be removed but still allows for the printing of the cylindrical shape that would be impossible without proper support).

MILESTONE 4 (STAGE 3) – DESIGN REVIEW FEEDBACK (COMPUTATION SUB-TEAM)

Team Tues-28 Number:

Use the space below to document mentor feedback for your design.

Use the space below to propose design refinements based on the feedback.

Adjust pick up and drop off locations so that container placement is more consistent. In the image above each of the small containers is placed with a different degree of success, despite all being based on the same series of joint rotations.

NOTE: Even though all the small container drop-off locations have the same exact arm rotation amounts (except the base rotation), different behavior is observed for each of them (see image above). See the code snippet included below.

if container_id == 1: # small red
 return [-0.5771, 0.229, 0.4218]
if container_id == 2: # small green
 return [0.0, -0.6153, 0.4218]
if container_id == 3: # small blue
 return [0.0, 0.6153, 0.4218]

List of Sources

- [1] "Project 2: Get a Grip," class notes for 1P13, McMaster University, Fall, 2020
- [2] "Lecture 15a Concept Evaluation and Selection," class notes for 1P13, McMaster University, Fall, 2020
- [3] "Lecture 15b Design Configuration and Communication," class notes for 1P13, McMaster University, Fall, 2020
- [4] "Functions I" class notes for 1P13, McMaster University, Fall, 2020
- [5] "Functions II" class notes for 1P13, McMaster University, Fall, 2020
- [6] "Sequences, Lists, Repetition I" class notes for 1P13, McMaster University, Fall, 2020
- [7] "Sequences, Lists, Repetition II" class notes for 1P13, McMaster University, Fall, 2020
- [8] "Conditionals" class notes for 1P13, McMaster University, Fall, 2020
- [9] 2020. Autodesk Inventor Professional 2021. Autodesk.
- [10] Ansys Granta EduPack software, Granta Design Limited, Cambridge, UK, 2020 (www.grantadesign.com).
- [11] "Python Library Documentation," class notes for 1P13, McMaster University, Fall, 2020
- [12] 2020. Quanser Interactive Labs. Quanser.
- [13] "Intro to Sketching & Multiview's," class notes for 1P13, McMaster University, Fall 2020
- [14] "Isometric Views," class notes for 1P13, McMaster University, Fall 2020
- [15] "Introduction to Inventor," class notes for 1P13, McMaster University, Fall 2020
- [16] "Visualization and Solid Modelling II," class notes for 1P13, McMaster University, Fall 2020
- [17] "Engineering Drawing," class notes for 1P13, McMaster University, Fall 2020
- [18] "Assembly Modelling I," class notes for 1P13, McMaster University, Fall 2020
- [19] "Symbols and Hole Conventions," class notes for 1P13, McMaster University, Fall 2020

[20] J. L. Sheets, C. Wilcox, and T. Wilwerding, "Cement Selection for Cement-Retained Crown Technique with Dental Implants," *J. Prosthodont.*, vol. 17, no. 2, pp. 92–96, 2008, doi: <u>https://doi.org/10.1111/j.1532-849X.2007.00262.x</u>.

[21] P. Odthon, P. Khongkhunthian, K. Sirikulrat, C. Boonruanga, and N. Sirikulrat, "In vitro shear bond strength test and failure mechanism of zinc phosphate dental cement," *Int. J. Adhes. Adhes.*, vol. 59, pp. 98–104, Jun. 2015, doi: 10.1016/j.ijadhadh.2015.01.010.

[22] G. J. P. Fleming, A. A. Farooq, and J. E. Barralet, "Influence of powder/liquid mixing ratio on the performance of a restorative glass-ionomer dental cement," *Biomaterials*, vol. 24, no. 23, pp. 4173–4179, Oct. 2003, doi: 10.1016/S0142-9612(03)00301-6.

[23] H. E. E. Hill and J. Lott, "A clinically focused discussion of luting materials," *Aust. Dent. J.*, vol. 56, no. s1, pp. 67–76, 2011, doi: <u>https://doi.org/10.1111/j.1834-7819.2010.01297.x</u>.

[24] J. G. Vargas Villanueva, P. A. Sarmiento Huertas, F. S. Galan, R. J. Esteban Rueda, J. C. Briceño Triana, and J. P. Casas Rodriguez, "Bio-adhesion evaluation of a chitosan-based bone bio-adhesive," *Int. J. Adhes. Adhes.*, vol. 92, pp. 80–88, Jul. 2019, doi: 10.1016/j.ijadhadh.2019.04.009.

[25] R. Abbasi, A. Nodehi, and M. Atai, "Synthesis of poly(acrylic-co-itaconic acid) through precipitation photopolymerization for glass-ionomer cements: Characterization and properties of the cements," *Dent. Mater.*, vol. 36, no. 6, pp. e169–e183, Jun. 2020, doi: 10.1016/j.dental.2020.03.006.

[26] "Bio-mechanical Properties of Novel Bi-layer Collagen-Elastin Scaffolds for Heart Valve Tissue Engineering|ElsevierEnhanceReader."https://reader.elsevier.com/reader/sd/pii/S1877705813010321?token=1A0
 9CB9B7EA463D480D278AAAE2A8DEFDE12D1A086E136698B4520CDA4917629531560E2CCD46179A3
 F6BC9CACA1D8D0 (accessed Dec. 06, 2020).

[27] F. Oveissi, S. Naficy, A. Lee, D. S. Winlaw, and F. Dehghani, "Materials and manufacturing perspectives in engineering heart valves: a review," *Materials Today Bio*, vol. 5. Elsevier B.V., Jan. 01, 2020, doi: 10.1016/j.mtbio.2019.100038.

[28] C. H. Priya, M. Divya, and B. Ramachandran, "Recent investigation on biomaterial-based tissue engineered heart valve (TEHV)," doi: 10.1016/j.matpr.2020.07.712.

[29] F. Oveissi, S. Naficy, A. Lee, D. S. Winlaw, and F. Dehghani, "Materials and manufacturing perspectives in engineering heart valves: a review," *Materials Today Bio*, vol. 5. Elsevier B.V., Jan. 01, 2020, doi: 10.1016/j.mtbio.2019.100038.

[30] I. Androulakis, M. E. Faure, R. P. J. Budde, and T. van Walsum, "Automated Quantification of Bileaflet Mechanical Heart Valve Leaflet Angles in CT Images," 2018, doi: 10.1109/TMI.2018.2871366.

[31] L. P. Dasi, H. A. Simon, P. Sucosky, and A. P. Yoganathan, "FLUID MECHANICS OF ARTIFICIAL HEART VALVES," doi: 10.1111/j.1440-1681.2008.05099.x.

[32] H. M. J. Mcewen *et al.*, "The influence of design, materials and kinematics on the in vitro wear of total knee replacements," *Journal of Biomechanics*, vol. 38, pp. 357–365, 2005, doi: 10.1016/j.jbiomech.2004.02.015.

[33] P. S. Walker, G. W. Blunn, and P. A. Lilley, "Wear Testing of Materials and Surfaces for Total Knee Replacement." Accessed: Dec. 04, 2020. [Online].

[34] M. Bahraminasab, B. Sahari, K. Edwards, F. Farahmand, T. Sai Hong, and H. Naghibi, "Material tailoring of the femoral component in a total knee replacement to reduce the problem of aseptic loosening," 2013, doi: 10.1016/j.matdes.2013.05.066.

[35] M. N. Rahaman, A. Yao, B. S. Bal, J. P. Garino, and M. D. Ries, "Ceramics for Prosthetic Hip and Knee Joint Replacement," doi: 10.1111/j.1551-2916.2007.01725.x.

[36] J. T. Hodrick, E. P. Severson, D. S. Mcalister, B. Dahl Bs, and A. A. Hofmann, "Highly Crosslinked Polyethylene is Safe for Use in Total Knee Arthroplasty," 2008, doi: 10.1007/s11999-008-0472-4.

[37] A. Sola, D. Bellucci, and V. Cannillo, "Functionally graded materials for orthopedic applications-an update on design and manufacturing," 2016, doi: 10.1016/j.biotechadv.2015.12.013.

[38] "Orthodontic Brackets (Braces): How do They Work? | ART Orthodontics Davie FL," Dec. 19, 2019.
https://www.artorthodontics.com/2019/12/orthodontic-brackets-braces-how-do-they-work/ (accessed Dec. 09, 2020).

[39] T. Eliades, "Orthodontic materials research and applications: Part 2. Current status and projected future developments in materials and biocompatibility," *American Journal of Orthodontics and Dentofacial Orthopedics*, vol. 131, no. 2, pp. 253–262, Feb. 2007, doi: 10.1016/j.ajodo.2005.12.029.

[40] O. Keith, S. P. Jones, and E. H. Davies, "The Influence of Bracket Material, Ligation Force and Wear on Frictional Resistance of Orthodontic Brackets," *British Journal of Orthodontics*, vol. 20, no. 2, pp. 109–115, May 1993, doi: 10.1179/bjo.20.2.109.

[41] D. Birnie, "Ceramic Brackets," *British Journal of Orthodontics*, vol. 17, no. 1, pp. 71–75, Feb. 1990, doi: 10.1179/bjo.17.1.71.

[42] E. Morina, T. Eliades, N. Pandis, A. Jäger, and C. Bourauel, "Torque expression of self-ligating brackets compared with conventional metallic, ceramic, and plastic brackets," *European Journal of Orthodontics*, vol. 30, no. 3, pp. 233–238, Jun. 2008, doi: 10.1093/ejo/cjn005.

[43] V. Cacciafesta, M. F. Sfondrini, A. Ricciardi, A. Scribante, C. Klersy, and F. Auricchio, "Evaluation of friction of stainless steel and esthetic self-ligating brackets in various bracket-archwire combinations," *American Journal of Orthodontics and Dentofacial Orthopedics*, vol. 124, no. 4, pp. 395–402, Oct. 2003, doi: 10.1016/S0889-5406(03)00504-3.

[44] A. Karamouzos, A. E. Athanasiou, and M. A. Papadopoulos, "Clinical characteristics and properties of ceramic brackets: A comprehensive review," *American Journal of Orthodontics and Dentofacial Orthopedics*, vol. 112, no. 1, pp. 34–40, Jul. 1997, doi: 10.1016/S0889-5406(97)70271-3.

[45] 2020. Prusaslicer. PrusaResearch.

Appendix A – Screenshots of Solid Model:

1P13 DP-2 Final Report

Tutorial 05

Appendix B – Engineering Drawings of Sterilization Container Design:

Appendix C – Screenshots of Computer Program:

```
_____
## -----
## TEMPLATE
## Please DO NOT change the naming convention within this template. Some changes may
## lead to your program not functioning as intended.
import time
import random
import sys
sys.path.append('../')
from Common_Libraries.p2_lib import *
import os
from Common_Libraries.repeating_timer_lib import repeating_timer
def update_sim ():
   try:
      arm.ping()
   except Exception as error_update_sim:
      print (error_update_sim)
arm = qarm()
update_thread = repeating_timer(2, update_sim)
## STUDENT CODE BEGINS
## Example to rotate the base: arm.rotateBase(90)
1.1.1
1P13 Project 2
Dec 2nd, 2020
Tues-28 Computing subteam:
   Luigi Quattrociocchi (quattrl)
   Hetash Rattu (rattuh)
1.1.1
```

'''NECESSARY CONSTANT VARIABLES'''

```
EMG_THRESHOLD = 0.4
                                           # 0-1 muscle sensor value
DELAY = 3.0
                                           # number of seconds between commands
SMALL_GRIP = 28.4
                                           # angle for containers 1-3
LARGE_GRIP = 23.3
                                           # angle for containers 4-6
HOME\_LOCATION = [0.4064, 0.0, 0.4826]
                                           # effector position at arm.home()
PICK_UP_LOCATION = [0.4989, 0.003, 0.0408] # effector position of container
'''BEGIN FUNCTION DEFINITIONS'''
def identify_autoclave_bin_location(container_id):
    Returns a list with 3 elements describing x, y, z coordinates of the
    location of an autoclave bin that corresponds to the given container id
    Parameters:
        container_id (int): the id of the desired container (1-6)
    Returns:
    a list of floats of length 3 containing location coordinates
    if container_id == 1: # small red
        return [-0.5711, 0.229, 0.4218]
    if container_id == 2: # small green
        return [0.0, -0.6253, 0.4072]
    if container_id == 3: # small blue
       return [0.0, 0.6253, 0.4072]
    if container_id == 4: # large red
        return [-0.3481, 0.1442, 0.3303]
    if container_id == 5: # large green
        return [0.0, -0.3886, 0.3638]
    if container_id == 6: # large blue
       return [0.0, 0.3886, 0.3638]
    # base case home location
    return HOME_LOCATION
def move_end_effector(x, y, z):
    Waits for the correct configuration of emg sensor values (left arm
    flexed above the threshold and right arm fully extended), then moves
    the arm to the specified x, y, z coordinate location.
    Parameters:
        x (float): x coordinate location of the end effector
        y (float): y coordinate location of the end effector
        z (float): z coordinate location of the end effector
    Returns: None
    1.1.1
    # remind the user
    print("MOVE: FLEX LEFT ONLY")
    # wait for left flexed and right extended
    while True:
        left_value = arm.emg_left()
        right_value = arm.emg_right()
        if left_value > EMG_THRESHOLD and \
           right_value == 0:
            # move arm to specified location
            arm.move_arm(x, y, z)
            # terminate the function
            break
```

1P13 DP-2 Final Report

```
def control_gripper(to_open, container_id):
    Waits for the correct configuration of emg sensor values (right arm
    flexed above the threshold and left arm fully extended), then opens
    or closes the gripper based on the given to_open boolean flag by an
    amount that is determined by the container size.
    Parameters:
        to_open (bool): should gripper be opened (True) or closed (False) container_id (int): the id of the desired container (1-6)
    Returns: None
    # determine what grip angle to use based on container size
    is_small = 1 <= container_id <= 3</pre>
    grip_amount = SMALL_GRIP if is_small else LARGE_GRIP
    # determine if gripper should be opened or closed
    grip_amount = -grip_amount if to_open else grip_amount
    # remind the user
    print("GRAB: FLEX RIGHT ONLY")
    # wait for right flexed and left extended
    while True:
        left_value = arm.emg_left()
        right_value = arm.emg_right()
        if right_value > EMG_THRESHOLD and \
           left_value == 0:
            # change gripper angle by predetermined grip amount
            arm.control_gripper(grip_amount)
            # terminate the function
            break
def open_autoclave_drawer_bin(to_open, container_id):
    Waits for the correct configuration of emg sensor values (both left
    and right arms flexed above the threshold). After waiting it will
    check if the container is a large size and should continue (id 4-6).
    Then based on the to_open boolean flag will open or close the drawer
    which corresponds to the color of the container.
    Parameters:
        to_open (bool): should drawer be opened (True) or closed (False)
        container_id (int): the id of the desired container (1-6)
    Returns: None
    # determine container size based on container id
    is_large = 4 <= container_id <= 6
    # terminate the function immediately if container is small
    if not is_large:
        return
    # remind the user
    print("OPEN: FLEX BOTH ARMS")
    # wait for left and right both flexed
    while True:
        left_value = arm.emg_left()
        right_value = arm.emg_right()
        if left_value > EMG_THRESHOLD and \
            right_value > EMG_THRESHOLD:
            # open or close drawer based on color
            if container_id == 4: # large red
                arm.open_red_autoclave(to_open)
            if container_id == 5: # large green
                arm.open_green_autoclave(to_open)
            if container_id == 6: # large blue
                arm.open_blue_autoclave(to_open)
            # terminate the function
            break
```

1P13 DP-2 Final Report

```
def main():
    111
    The main logic and execution of task. This function will choose the
    ids of containers 1 to 6 in a random order and perform a full cycle
    of spawn, pick up, transfer, drop off, and home operations for each
    of them. There are no parameters or return values.
    111
    # return to home before beginning
    # assume environment has been reset
    arm.home()
    time.sleep(DELAY)
    # initializes a list of containers from 1 to 6 inclusive
    containers = list(range(1, 7))
    # randomly shuffles the list of ids.
    random.shuffle(containers)
    # iterates over shuffled list of container ids
    for container in containers:
        a single cycle will do the following:
            spawn container
            pick up container
            transfer container
            drop off container
           return to home
        some delay is added between each command
        1 1 1
        # spawn
        arm.spawn_cage(container)
        time.sleep(DELAY)
        # pick up
        move_end_effector(*PICK_UP_LOCATION)
        time.sleep(DELAY)
        control_gripper(False, container)
        time.sleep(DELAY)
        move_end_effector(*HOME_LOCATION)
        time.sleep(DELAY)
        # transfer
        open_autoclave_drawer_bin(True, container)
        time.sleep(DELAY)
        move_end_effector(*identify_autoclave_bin_location(container))
        time.sleep(DELAY)
        # drop off
        control_gripper(True, container)
        time.sleep(DELAY)
        # return home
        move_end_effector(*HOME_LOCATION)
        time.sleep(DELAY)
        open_autoclave_drawer_bin(False, container)
        time.sleep(DELAY)
    # program is finished
    print("DONE")
```

'''MAIN EXECUTION'''

```
if __name__ == '__main__':
main()
```